

DAM-PT03 采集卡说明书

北京聚英翱翔电子有限责任公司 2015 年 05 月

官网: www.juyingele.com

目录

_`	广	
<u> </u>	产品功能1	
三、	产品选型1	
四、	主要参数1	
五、	接口说明2	2
六、	通讯接线说明2)
	1、RS485级联接线方式2	2
七、	地址说明	;
八、	开发资料说明	;
	1、通讯协议说明	;
	2、Modbus 寄存器说明	;
	3、指令生成说明	ł
	4、指令列表	;
	5、指令详解	;
九、	测试软件说明	5
	1、软件界面	5
	2、波特率和设备地址更改方法	1
	3、PT100 线阻修正	;
+、	常见问题与解决方法10)

一、产品特点

- DC7-30V 宽压供电;
- RS485 通讯隔离;
- 通讯接口支持 RS232、RS485。;
- 支持标准 modbus 协议,同时支持 ASCII/RTU 格式;
- 测量芯片采用 24 位 AD 转换器,精度可做到 0.02 度、

二、产品功能

- 3 路 PT100 采集通道;
- 支持5位寻址地址;
- 支持波特率: 2400,4800,9600,19200,38400。

三、产品选型

型号	modbus	RS232	RS485	USB	WiFi	PT100
DAM-PT03-RS232	\bullet					3
DAM-PT03-RS232+485						3

四、主要参数

参数	说明
数据接口	RS485、RS232
额定电压	DC 7-30V
电源指示	1路红色 LED 指示(不通信时常亮,通信时闪烁)
通讯指示	与电源指示灯共用
温度范围	-200℃到650℃
温度分辨率	0.1%
尺寸	97*50*32mm
重量	100g
默认通讯格式	9600, n, 8, 1
波特率	2400,4800,9600,19200,38400
软件支持	配套配置软件、控制软件; 支持各家组态软件; 支持 Labviewd 等

五、接口说明

六、通讯接线说明

PT100采用二线制接线方式

1、RS485级联接线方式

七、地址说明

设备地址由**拨码开关地址和设备基地址**两部分构成。 拨码开关地址:是五位拨码开关地址。(范围 0~31) 设备基地址:是指软件设置的地址,也叫偏移地址。 具体关系是:设备地址=拨码开关地址+设备基地址(无拨码开关设备:设备地址=设备基地 址)。

- 1、五个拨码全都拨到"ON"位置时,为地址"31";
- 2、五个拨码全都拨到"OFF"位置时,为地址"0";
- 3、最左边1为二进制最低位。

4、地址表:

八、开发资料说明

1、通讯协议说明

本产品支持标准 modbus 指令,有关详细的指令生成与解析方式,可根据本文中的寄存器表结合参考《MODBUS 协议中文版》即可。参考: <u>http://pan.baidu.com/s/1hqsuZNu</u>

2、Modbus 寄存器说明

本控制卡主要为温度寄存器,支持以下指令码: 3、4、6

指令码	含义
3	读取配置数据
4	读取温度数据
6	修改配置数据

寄存器地址表:

寄存器名称		寄存器地 址	数据类型	│
温度输入				
输入1	温度输	3x0001	S16(16 位有符号)或	第一路温度输入【-200-327℃】
	入		U16(16位无符号)	第一路温度输入【0-650℃】
输入2	4 号指令	3x0002	S16(16 位有符号)或	第二路温度输入【-200-327℃】
			U16(16 位无符号)	第二路温度输入【0-650℃】
输入3		3x0003	S16(16 位有符号)或	第三路温度输入【-200-327℃】
			U16(16 位无符号)	第三路温度输入【0-650℃】
输入1		3x0051	Float(浮点数)	第一路温度输入【-200-650℃】
输入2		3x0053	Float (浮点数)	第二路温度输入【-200-650℃】
输入3		3x0055	Float(浮点数)	第三路温度输入【-200-650℃】
配置参数				
通信波特率	保持寄	4x1001		见下表波特率数值对应表,默认为
	存器			0,支持 0-5,该寄存器同时决定
				RS232 和 RS485 的通信波特率
备用		4x1002		备用,用户不可写入任何值。
偏移地址		4x1003		设备地址=偏移地址+拨码开关地址
工作模式		4x1004		用户可以使用,存储用户数据
延迟时间		4x1005		用户可以使用,存储用户数据

备注:

①: Modbus 设备指令支持下列 Modbus 地址:

00001 至 09999 是离散输出(线圈)

10001 至 19999 是离散输入(触点)

30001 至 39999 是输入寄存器(通常是模拟量输入)

40001 至 49999 是保持寄存器(通常存储设备配置信息)

采用 5 位码格式,第一个字符决定寄存器类型,其余 4 个字符代表地址。 地址 1 从 0 开始,如 00001 对应 0000。

波特率数值对应表

数值	波特率
0	9600
1	2400
2	4800
3	9600
4	19200
5	38400

3、指令生成说明

应用举例及其说明:本机地址除了拨码开关地址之外,还有默认的 254 为广播地址。当 总线上只有一个设备时,无需关心拨码开关地址,直接使用 254 地址即可,当总线上有多个 设备时通过拨码开关选择为不同地址,发送控制指令时通过地址区别。

注意: RS232 总线为1对1总线,即总线上只能有两个设备,例如电脑与继电器板卡,

联系电话和 QQ: 4008128121

只有485总线才可以挂载多个设备。

4、指令列表

情景	RTU 格式(16 进制发	ASCII 格式(ASCII 格式发送)
	送)	
查询第1路温度	FE04000000125C5	3A 46 45 30 34 30 30 30 30 30 30 30 30 31 46 44 0D 0A
返回信息	FE 04 02 00 00 AD 24	3A 46 45 30 34 30 32 30 30 30 30 46 43 0D 0A
查询第2路温度	FE04000100017405	3A 46 45 30 34 30 30 30 31 30 30 30 31 46 43 0D 0A
查询第3路温度	FE04000200018405	3A 46 45 30 34 30 30 30 32 30 30 30 31 46 42 0D 0A
查询 1~3 路温度	FE040000003A404	3A 46 45 30 34 30 30 30 30 30 30 30 30 33 46 42 0D 0A

5、指令详解

5.1、温度查询

获取到的温度数据与实际输入值之间的关系为:实际值=返回值*0.01

查询第一路温度(查询整型寄存器地址,查询温度范围是-200-327℃或者 0-650℃)

FE04000000125C5

字段	含义	备注
FE	设备地址	
04	04 指令	查询输入寄存器指令
00 00	起始地址	要查询的第一路模拟量寄存器地址
00 01	查询数量	要查询的模拟量数量
25 C5	CRC16	

模拟返回信息:

FE 04 02 00 00 AD 24

字段	含义	备注
FE	设备地址	
04	04 指令	返回指令:如果查询错误,返回 0x82
02	字节数	返回状态信息的所有字节数。1+(n-1)/8
00(TH) 00(TL)	查询的 AD 字	TH 为温度高字节,TL 为温度低字节
AD 24	CRC16	

查询第一路温度(查询浮点数寄存器地址,查询温度范围是-200-650℃) 查询第一路温度 float 类型

FE 04 00 32 00 02 C4 0B

字段	含义	备注
FE	设备地址	
04	04 指令	查询输入寄存器指令
00 32	起始地址	要查询的第一路模拟量 float 类型寄存器地址
00 02	查询数量	要查询的模拟量数量
C4 0B	CRC16	

模拟返回信息:

FE 04 04 41 CB 70 A4 B5 32

字段	含义	备注
FE	设备地址	
04	04 指令	返回指令:如果查询错误,返回 0x82
04	字节数	返回状态信息的所有字节数。1+(n-1)/8
41 CB 70 A4	查询的 AD 字	换算回来数值是 25.43
AD 24	CRC16	

九、测试软件说明

1、软件界面

软件功能:

- 监测温度
- 温度线损补偿
- 修改波特率和设备地址

2、波特率和设备地址更改方法

打开采集配置软件,选择**串口设定**菜单,在通讯参数中点击**关闭串口**,选择相应的串口号和波特率(默认 9600),超时时间和最小间隔都改成 50ms。基本参数中设备型号选择 PT03。点击打开串口,点击 读取 按钮,在下边信息栏中显示读取成功,则表示联机成功, (若显示通信失败,请确定串口接线,串口号,波特率和地址是否正确)。

确定通信成功后,在基本参数中选择正确的波特率和需要配置的设备地址,点击**写入**, 若是下边信息栏种显示写入成功,则说明操作成功,可以点击**读取**,确定操作结果。

🦏 JYModbus PT100 配置软件		
监控 线损补偿 校准 串口设定		
监控 线损补偿 板准 串口设定 通讯参数 ① 书口号: COM7 ⑦ 求持率: 9600 ⑦ 校验位: None 教据位: 8 ④ 印止位: 1 超时时间 50 ⑤ ⑥ ⑤ ⑥ ⑥ ④ 和时间隔 50 ⑤ ⑥ ⑦ ⑥ ⑦ ⑥ ⑥ ⑦ ⑦ ⑧ ⑥ ⑦ ⑥ ⑥ ⑥ ⑦ ⑥ ⑦ ⑥ ⑦ ⑥ ⑥ ⑥ ⑥ ⑦	基本参数 设备型号: PT03 ▼ 设备波特率: 默认9600 ▼ 设备基地址 0 刷新时间(0.1s) 5 滤波时间(0.1s) 20	
未联机	【(1) 2015-05-28 15:45:21】: 初始化系统参数	.::

设备地址由拨码开关地址和设备基地址两部分构成。

拨码开关地址:是五位拨码开关地址。(范围 0~31)

设备基地址:是指软件设置的地址,也叫偏移地址。

具体关系是: 设备地址=拨码开关地址+设备基地址(无拨码开关设备: 设备地址=设备基地 址)。

修改设备地址如果小于 31,即用拨码开关。如果大于 31,需要修改设备基地址。

如:设置设备地址为100,拨码开关地址拨为0,设备基地址应该写入100。

7

3、PT100 线阻修正

JYModbus PT100 配置软件 □ □ □ ■ ▲ 监控 线损补偿 校准 串口设定 □ ● ●				
配置 线损值(*10毫欧) -38				
通道	当前线损值 (*10毫欧)	配置		
1	-38	写入		
2	0	(写入		
3	0	「「「「」」「「」」「」」「」」「」」「」」「」」「」」」「」」「」」」「」		
4	0	[写入		
5	0	[写入		
6	0	[写入		
		[写入		
刷新次数1485	联机			

线损补偿菜单下可补偿传感器温度。线损值与温度对应关系: 380 毫欧 =1℃

如:现在实际温度是 20 度,第一路显示温度是 20.1 度,说温度高了 0.1 度,对应 PT100 电阻是 38 毫欧,在**线损值输入框**填入 3.8,点击第一路后边的_______。写入 成功后会在前边显示写入结果,就完成了第一路的修正;

反之实际温度是 20.1 度,第一路显示温度是 20 度,说温度低了 0.1 度,对应 PT100 电阻是 38 毫欧,在**线损值输入框**填入-3.8,点击第一路后边的**与**。写入 成功后会在前边显示写入结果,就完成了第一路的修正。以此类推,可以修正其他通道。

W JYModbus PT100 配置软件				
监控	线损补偿 校准 日	串口设定		
通道	实时数据	曲线显示	港守 議会	
温度1#	29.82 °C			
温度2#	29.78 °C		1 1 1	
温度3#	29.21 °C		ļ † 1	
温度4#	29.42 °C		³⁰ † = 1	
			1 1 1	
			25	
			1 1 1	
			20 -	
			н —	
			15 -	
			I I I I I I I I I I I I I I I I I I I	
			10-	
			5	
			· · · · · · · · · · · · · · · · · · ·	
			0 5 10 15 20 25 30 35	
刷新次数152				

监控菜单下可以实时监控每路的温度及变化曲线。 若要控制多个设备,可以用我们公司提供的"聚英组态软件",详见聚英组态软件说明.pdf 聚英组态软件下载地址: <u>http://pan.baidu.com/s/1ntPZK4h</u>

官网: www.juyingele.com

十、常见问题与解决方法

1.采集板卡供电后使用 232 接口无法建立通信,无法控制

首先测试不同波特率是否可以控制,485 接口注意 A+、B-线以及屏蔽线,屏蔽线不是 必须,但在通信误码率大的情况下必须接上,即便距离很近也可能出现此类情况。

2.485 总线, 挂载了大于1个的设备, 我以广播地址 254 发送继电器1吸和, 但并不是所有 模块的继电器1吸和。

广播地址在总线上只有一个设备时可以使用,大于1个设备时请以拨码开关区分地址来 控制,否则会因为模块在通信数据的判断不同步上导致指令无法正确执行。