

云系列 LORA1000 标准版 V1.0

北京聚英翱翔电子有限责任公司 2021年6月

目 录

— 、	产品介绍	2
	1、产品概述	2
	2、产品特点	2
	3、产品功能	
	4、版本说明	
_,	主要参数	3
三、	接口说明	3
四、	快速使用说明	4
	1、连接通讯	4
	2、参数读取和设置	5
	3、添加子机设备	5
	4、搜所在线设备	<i>6</i>
	5、云平台界面	<i>6</i>
	6、云平台添加透传模块	7
五、	开发资料说明	8
	1、通讯协议说明	8
	2、Modbus 寄存器说明	8
	3、指令列表	11
	4、指令详解	14
	4.1、阀门打开和关闭	14
	4.2、阀门状态	14
	4.3、光耦输入	15
	4.4、模拟量查询	16
	4.5、全开全关指令	16
	4.6、模拟量查询	17
+-	-、常见问题与解决方法	18
+=	二、技术支持联系方式	18
软件	上下载	1.5

一、产品介绍

1、产品概述

云系列 LORA1000 标准网关是集合 Lora、GPRS、以太网为一体的环境采集、阀门灌溉控制终端,可实现远程采集与监控,定时控制,智能自控边缘计算等功能,逻辑可以脱机运行等优点,同时接口丰富体积更小、可以应用于各种采集控制场景。

2、产品特点

- 供电电压: DC7-30V:
- 通讯接口: wifi、以太网口、GPRS、485、USB:
- 通信协议: 支持标准 modbus RTU/TCP 协议;
- 通讯距离: 12 扩频下可达 3kM:
- 功能配置:定时触发、智能自控。

3、产品功能

- 可实现 32 路低功耗环境采集器接入;
- 可实现 32 路低功耗阀门控制器控制;
- 可实现最大支持 200 台透传模块接入;
- 可实现云端操作、配置、历史曲线查询;
- 可实现环境变量异常报警推送功能;
- 可实现本地阀门模拟量触发,定时控制等功能。

4、版本说明

版本	阀门控制	低功耗传感器	DAM 透传	智能自控
LORA1000标准版	•	•	•	•
LORA1000ML 透传			•	

- LORA1000 标准版支持其下子机手机远端控制;
- LORA1000ML 透传可以实现 DAM 子机 LORA 透传到服务器;
- 智能控制可多达 3x70 组规则条件设定,满足各种逻辑要求。

二、主要参数

参数	说明	
通讯接口	GPRS、wifi、网口、RS485、USB	
默认 IP	192.168.1.232(以太网)、192.168.10.1(WIFI)	
额定电压	DC 7-30V 直流电源	
额定功率	DC12V 54mA 约 0.6W	
电源指示	1路红色 LED 指示(不通信时常亮,通信时闪烁)	
输出指示	3路通讯指示灯	
温度范围	工业级,-40℃~85℃	
工作频率	470MHz(天线433-510MHZ)可配置433MHZ	
扩频因子	7、8、9、10、11、12	
默认参数	扩频10, 带宽125MHZ, 区域号1, 地址0	
尺寸	105*65*28	
重量	145g	
默认通讯格式	9600, n, 8, 1	
波特率	2400, 4800, 9600, 19200, 38400	
	配套配置软件、app 控制软件,平台软件;	
软件支持	支持各家组态软件;	
	支持 Labviewd 等	

三、接口说明

接口说明	描述			
1	VCC 供电正极 DC7-30V			
2	GND 电源地			
3	PB	485通讯屏蔽线		
4	A+	485通讯 A+		
5	B- 485通讯 B-			
通讯接口	描述			
	网口(192.168.1.232)			
网口/4G/wifi	wifi (192.168.10.1)			
	4G 使用物联网卡,注意方向			
USB	供电和通讯			
天线接口	描述			
wifi	接入 WiFi 2.4G 天线			
GPRS	接入4G 天线			
LORA	接入 LORA 470-510MHz 天线			

四、快速使用说明

备注:设备出厂默认会与子机配置好参数,如需手动添加示例如下

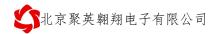
1、连接通讯

2、参数读取和设置

3、添加子机设备

进入自动配置后,子机长按按键 3S 后点按一下会自动搜所配置(旧版长按 3S 点按 3 下)

4、搜所在线设备



地址修改可以通过拨码或者软件右侧进行地址更改

5、云平台界面

模拟量显示界面可以在这里显示

6、云平台添加透传模块

子机同样长按 3S 后点按一下(旧版长按 3S 点按 3 下),成功后会弹出配置成功。注: DAM 子机要先配置好地址信息,方便后面添加。

打开添加 DAM 子机按钮

添加成功后,分类页面会显示设备。具体功能祥见 云平台使用说明手册。

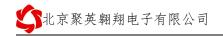
五、开发资料说明

1、通讯协议说明

本产品支持标准 modbus 指令,有关详细的指令生成与解析方式,可根据本文中的寄存器表结合参考《MODBUS 协议中文版》 即可。


Modbus 协议说明书下载链接地址:

http://www.juyingele.com.cn/software/software/Modbus%20POLL 软件及使用教程.rar


2、Modbus 寄存器说明

寄存器地址表:

寄存器名称	支持指令码	寄存器地址	说明			
阀门通道控制						
DO1	01: 查询指令,	0	第一路阀门输出			
DO2	05: 单通道控	1	第二路阀门输出			
DO3	制指令,	2	第三路阀门输出			
DO4	15: 多通道同	3	第四路阀门输出			
DO5	时控制指令。	4	第五路阀门输出			
DO6		5	第六路阀门输出			
DO7		6	第七路阀门输出			
DO8		7	第八路阀门输出			
DO9		8	第九路阀门输出			
DO10		9	第十路阀门输出			
DO11		10	第十一路阀门输出			
DO12		11	第十二路阀门输出			
DO13		12	第十三路阀门输出			
DO14		13	第十四路阀门输出			
DO15		14	第十五路阀门输出			
DO16		15	第十六路阀门输出			
DO17		16	第十七路阀门输出			
DO18		17	第十八路阀门输出			
DO19		18	第十九路阀门输出			
DO20		19	第二十路阀门输出			
DO21		20	第二十一路阀门输出			
DO22		21	第二十二路阀门输出			
DO23		22	第二十三路阀门输出			
DO24		23	第二十四路阀门输出			
DO25		24	第二十五路阀门输出			
DO26		25	第二十六路阀门输出			
DO27		26	第二十七路阀门输出			

DO28		27		第二十八路阀门输出	
DO29		28		第二十九路阀门输出	
DO30		29		第三十路阀门输出	
DO31		30		第三十一路阀门输出	
DO32		31		第三十二路阀门输出	
离散量输入					
DI1	02:查询指令。	0		第一路输入反馈	
DI2		1		第二路输入反馈	
DI3		2		第三路输入反馈	
DI4		3		第四路输入反馈	
DI5		4		第五路输入反馈	
DI6		5		第六路输入反馈	
DI7		6		第七路输入反馈	
DI8		7		第八路输入反馈	
DI9		8		第九路输入反馈	
DI10		9		第十路输入反馈	
DI11		10		第十一路输入反馈	
DI12		11		第十二路输入反馈	
DI13		12		第十三路输入反馈	
DI14		13		第十四路输入反馈	
DI15		14		第十五路输入反馈	
DI16		15		第十六路输入反馈	
DI17		16		第十七路输入反馈	
DI18		17		第十八路输入反馈	
DI19		18		第十九路输入反馈	
DI20		19		第二十路输入反馈	
DI21		20		第二十一路输入反馈	
DI22		21		第二十二路输入反馈	
DI23		22		第二十三路输入反馈	
DI24		23		第二十四路输入反馈	
DI25		24		第二十五路输入反馈	
DI26		25		第二十六路输入反馈	
DI27		26		第二十七路输入反馈	
DI28		27		第二十八路输入反馈	
DI29		28		第二十九路输入反馈	
DI30		29		第三十路输入反馈	
DI31		30		第三十一路输入反馈	
DI32		31		第三十二路输入反馈	
模拟量输入					
AI1	04: 只读寄存	u16	0	第一路输入	
AI2	器	u16	1	第二路输入	

AI3	备注: float 浮	u16	2	第三路输入
AI4	点类型起始地	u16	3	第四路输入
AI5	址为50,每个	u16	4	第五路输入
AI6	通道两个字节	u16	5	第六路输入
AI7		u16	6	第七路输入
AI8		u16	7	第八路输入
AI9		u16	8	第九路输入
AI10		u16	9	第十路输入
AI11		u16	10	第十一路输入
AI12		u16	11	第十二路输入
AI13		u16	12	第十三路输入
AI14		u16	13	第十四路输入
AI15		u16	14	第十五路输入
AI16		u16	15	第十六路输入
AI17		u16	16	第十七路输入
AI18		u16	17	第十八路输入
AI19		u16	18	第十九路输入
AI20		u16	19	第二十路输入
AI21		u16	20	第二十一路输入
AI22		u16	21	第二十二路输入
AI23		u16	22	第二十三路输入
AI24		u16	23	第二十四路输入
AI25		u16	24	第二十五路输入
AI26		u16	25	第二十六路输入
AI27		u16	26	第二十七路输入
AI28		u16	27	第二十八路输入
AI29		u16	28	第二十九路输入
AI30		u16	29	第三十路输入
AI31		u16	30	第三十一路输入
AI32		u16	21	第三十二路输入
配置参数				
RS485 波特率	03: 保持寄存	1000		见下表波特率数值对应表,默认为0,
	器			该寄存器决定 RS485 的通信方式。
偏移地址		1002		设备地址=偏移地址

备注:

①:使用第三方 PLC/组态与设备通讯时, Modbus 地址定义如下:

00001 至 09999 是离散输出(线圈)

10001 至 19999 是离散输入(触点)

30001 至 39999 是输入寄存器(通常是模拟量输入)

40001 至 49999 是保持寄存器

采用5位码格式,第一个字符决定寄存器类型,其余4个字符代表地址。地址1从0

开始,如 00001 对应 0000。

说明:由于不同品牌 PLC/组态软件对 Modbus 地址定义可能有不同,具体以其帮助文档中对 Modbus 的定义说明为准。

PLC 例程下载地址:

https://www.juyingele.com.cn/zlxz/danziliao/1226.html

第三方组态(MCGS/组态王/力控/WINCC/威纶通)例程下载地址:

http://www.juyingele.com.cn/software/software/第三方组态例程.rar

②: 波特率及校验位

串口1保持寄存器地址1000

串口 2 保持寄存器地址 1001

字节位数	定义	说明
Bit0~Bit7	波特率	0: 9600
		1: 2400
		2: 4800
		3: 9600
		4: 19200
		5: 38400
		6: 115200
		7: 57600
		8: 56000
		9: 14400
		10: 1200
Bit8~Bit9	奇偶校验	0: 无校验
		1: 偶校验 (Even)
		2: 奇校验 (Odd)
Bit10~Bit11	停止位	0: 停止位 1 位
		1: 停止位 2 位
		2: 停止位 1.5 位

3、指令列表


情景 1 控制阀门	RTU 格式(16 进制发送)
查询三十二路状态	FE 01 00 00 00 20 29 DD
查询指令返回信息	FE 01 04 00 00 00 00 F4 DE
控制第一路开	FE 05 00 00 FF 00 98 35
控制返回信息	FE 05 00 00 FF 00 98 35
控制第一路关	FE 05 00 00 00 00 D9 C5
控制返回信息	FE 05 00 00 00 00 D9 C5
控制第二路开	FE 05 00 01 FF 00 C9 F5
控制第二路关	FE 05 00 01 00 00 88 05

控制第三路开	FE 05 00 02 FF 00 39 F5
控制第三路关	FE 05 00 02 00 00 78 05
控制第四路开	FE 05 00 03 FF 00 68 35
控制第四路关	FE 05 00 03 00 00 29 C5
控制第五路开	FE 05 00 04 FF 00 D9 F4
控制第五路关	FE 05 00 04 00 00 98 04
控制第六路开	FE 05 00 05 FF 00 88 34
控制第六路关	FE 05 00 05 00 00 C9 C4
控制第七路开	FE 05 00 06 FF 00 78 34
控制第七路关	FE 05 00 06 00 00 39 C4
控制第八路开	FE 05 00 07 FF 00 29 F4
控制第八路关	FE 05 00 07 00 00 68 04
控制第九路开	FE 05 00 08 FF 00 19 F7
控制第九路关	FE 05 00 08 00 00 58 07
控制第十路开	FE 05 00 09 FF 00 48 37
控制第十路关	FE 05 00 09 00 00 09 C7
控制第十一路开	FE 05 00 0A FF 00 B8 37
控制第十一路关	FE 05 00 0A 00 00 F9 C7
控制第十二路开	FE 05 00 0B FF 00 E9 F7
控制第十二路关	FE 05 00 0B 00 00 A8 07
控制第十三路开	FE 05 00 0C FF 00 58 36
控制第十三路关	FE 05 00 0C 00 00 19 C6
控制第十四路开	FE 05 00 0D FF 00 09 F6
控制第十四路关	FE 05 00 0D 00 00 48 06
控制第十五路开	FE 05 00 0E FF 00 F9 F6
控制第十五路关	FE 05 00 0E 00 00 B8 06
控制第十六路开	FE 05 00 0F FF 00 A8 36
控制第十六路关	FE 05 00 0F 00 00 E9 C6
控制第十七路开	FE 05 00 10 FF 00 99 F0
控制第十七路关	FE 05 00 10 00 00 D8 00
控制第十八路开	FE 05 00 11 FF 00 C8 30
控制第十八路关	FE 05 00 11 00 00 89 C0
控制第十九路开	FE 05 00 12 FF 00 38 30
控制第十九路关	FE 05 00 12 00 00 79 C0
控制第二十路开	FE 05 00 13 FF 00 69 F0
控制第二十路关	FE 05 00 13 00 00 28 00
控制第二十一路开	FE 05 00 14 FF 00 D8 31
控制第二十一路关	FE 05 00 14 00 00 99 C1
控制第二十二路开	FE 05 00 15 FF 00 89 F1
控制第二十二路关	FE 05 00 15 00 00 C8 01
控制第二十三路开	FE 05 00 16 FF 00 79 F1

控制第二十三路关	FE 05 00 16 00 00 38 01
控制第二十四路开	FE 05 00 17 FF 00 28 31
控制第二十四路关	FE 05 00 17 00 00 69 C1
控制第二十五路开	FE 05 00 18 FF 00 18 32
控制第二十五路关	FE 05 00 18 00 00 59 C2
控制第二十六路开	FE 05 00 19 FF 00 49 F2
控制第二十六路关	FE 05 00 19 00 00 08 02
控制第二十七路开	FE 05 00 1A FF 00 B9 F2
控制第二十七路关	FE 05 00 1A 00 00 F8 02
控制第二十八路开	FE 05 00 1B FF 00 E8 32
控制第二十八路关	FE 05 00 1B 00 00 A9 C2
控制第二十九路开	FE 05 00 1C FF 00 59 F3
控制第二十九路关	FE 05 00 1C 00 00 18 03
控制第三十路开	FE 05 00 1D FF 00 08 33
控制第三十路关	FE 05 00 1D 00 00 49 C3
控制第三十一路开	FE 05 00 1E FF 00 F8 33
控制第三十一路关	FE 05 00 1E 00 00 B9 C3
控制第三十二路开	FE 05 00 1F FF 00 A9 F3
控制第三十二路关	FE 05 00 1F 00 00 E8 03
情景 2 查询开关量输入	
查询三十二路开关量状态	FE 02 00 00 00 20 6D DD
查询指令返回信息	FE 02 04 00 00 00 00 F4 ED
情景 3 查询模拟量	
查询第1路模拟量	FE 04 00 00 00 01 25 C5
返回信息	FE 04 02 00 00 AD 24
查询第2路模拟量	FE 04 00 01 00 01 74 05
查询第3路模拟量	FE 04 00 02 00 01 84 05
查询第4路模拟量	FE 04 00 03 00 01 D5 C5
查询第5路模拟量	FE 04 00 04 00 01 64 04
查询第6路模拟量	FE 04 00 05 00 01 35 C4
查询第7路模拟量	FE 04 00 06 00 01 C5 C4
查询第8路模拟量	FE 04 00 07 00 01 94 04
查询第9路模拟量	FE 04 00 08 00 01 A4 07
查询第 10 路模拟量	FE 04 00 09 00 01 F5 C7
查询第 11 路模拟量	FE 04 00 0A 00 01 05 C7
查询第 12 路模拟量	FE 04 00 0B 00 01 54 07
查询第 13 路模拟量	FE 04 00 0C 00 01 E5 C6
查询第 14 路模拟量	FE 04 00 0D 00 01 B4 06
查询第 15 路模拟量	FE 04 00 0E 00 01 44 06
查询第 16 路模拟量	FE 04 00 0F 00 01 15 C6
查询第 17 路模拟量	FE 04 00 10 00 01 24 00

查询第 18 路模拟量	FE 04 00 11 00 01 75 C0
查询第 19 路模拟量	FE 04 00 12 00 01 85 C0
查询第 20 路模拟量	FE 04 00 13 00 01 D4 00
查询第 21 路模拟量	FE 04 00 14 00 01 65 C1
查询第 22 路模拟量	FE 04 00 15 00 01 34 01
查询第 23 路模拟量	FE 04 00 16 00 01 C4 01
查询第 24 路模拟量	FE 04 00 17 00 01 95 C1
查询第 25 路模拟量	FE 04 00 18 00 01 A5 C2
查询第 26 路模拟量	FE 04 00 19 00 01 F4 02
查询第 27 路模拟量	FE 04 00 1A 00 01 04 02
查询第 28 路模拟量	FE 04 00 1B 00 01 55 C2
查询第 29 路模拟量	FE 04 00 1C 00 01 E4 03
查询第 30 路模拟量	FE 04 00 1D 00 01 B5 C3
查询第 31 路模拟量	FE 04 00 1E 00 01 45 C3
查询第 32 路模拟量	FE 04 00 1F 00 01 14 03
查询第 1~32 路模拟量	FE 04 00 00 00 20 E5 DD

4、指令详解

4.1、阀门打开和关闭

控制 1 路打开(以第一路开为例,其他通道参照本例),任意一个字节变动, CRC 校验位会随之变动。

发送码: FE 05 00 00 FF 00 98 35

字段	含义	备注
FE	设备地址	这里为广播地址
05	05 指令	单个控制指令
00 00	地址	要控制阀门寄存器地址
FF 00	指令	阀门开的动作
98 35	CRC16	前 6 字节数据的 CRC16 校验和

阀门通道返回信息:

返回码: FE 05 00 00 FF 00 98 35

字段	含义	备注
FE	设备地址	这里为广播地址
05	05 指令	单个控制指令
00 00	地址	要控制阀门寄存器地址
FF 00	指令	阀门开的动作
98 35	CRC16	前 6 字节数据的 CRC16 校验和

4.2、阀门状态

查询 32 路阀门

FE 01 00 00 00 20 29 DD

字段	含义	备注
FE	设备地址	这里为广播地址
01	01 指令	查询阀门状态指令
00 00	起始地址	要查询的第一个阀门寄存器地址
00 20	查询数量	要查询的阀门数量
29 DD	CRC16	前 6 字节数据的 CRC16 校验和

阀门返回信息:

FE 01 04 00 00 00 00 F4 DE

字段	含义	备注
FE	设备地址	
01	01 指令	返回指令:如果查询错误,返回 0x81
04	字节数	返回状态信息的所有字节数。1+(n-1)/8
00	查询的状态	返回的阀门反馈状态。
00		Bit0:第一个阀门反馈状态
00		Bit1:第二个阀门反馈状态
00		0 0 0 0 0 0
		Bit32:第 32 个阀门反馈状态
61 9C	CRC16	前 6 字节数据的 CRC16 校验和

4.3、光耦输入

查询光耦

发送码: FE 02 00 00 00 20 6D DD

字段	含义	备注
FE	设备地址	
02	02 指令	查询离散量输入(光耦输入)状态指令
00 00	起始地址	要查询的第一个光耦的寄存器地址
00 20	查询数量	要查询的光耦状态数量
6D DD	CRC16	

光耦返回信息:

返回码: FE 02 04 00 00 00 00 F4 ED

字段	含义	备注
FE	设备地址	
02	02 指令	返回指令:如果查询错误,返回 0x82
04	字节数	返回状态信息的所有字节数。1+(n-1)/8
00	查询的状态	返回的阀门状态。
00		Bit0:第一个光耦输入状态
00		Bitl:第二个光耦输入状态
00		0 0 0 0 0 0

		Bi32:第三十二个光耦输入状态
F4 ED	CRC16	

4.4、模拟量查询

查询模拟量 AD 字

发送码: FE 04 00 00 00 20 E5 DD

字段	含义	备注
FE	设备地址	
04	04 指令	查询输入寄存器指令
00 00	起始地址	要查询的第一路模拟量寄存器地址
00 20	查询数量	要查询的模拟量数量
E5 DD	CRC16	

模拟返回信息:

字段	含义	备注
FE	设备地址	
04	04 指令	返回指令:如果查询错误,返回 0x82
40	字节数	返回状态信息的所有字节数
00 00	查询的 AD	0x1232, 即十进制 4658, 为查询的模拟量 AD
	字	字的值, 实际值=返回值*0.001(即 4.658mA)
44 5D	CRC16	

4.5、全开全关指令

全开全关指令解析

全开发送码: FE OF OO OO OO 10 O2 FF FF A6 64 全断发送码: FE OF OO OO OO 10 O2 OO OO A7 D4

字段	含义	备注
FE	设备地址	
0F	0F 指令	返回指令:如果查询错误,返回 0x82
00 00	起始地址	
00 10	控制数量	控制的反馈数量
02	字节数	发送命令字节数
FF FF (或 00 00)	全开全关命令	FF FF 全开命令 00 00 全关命令
A1 7C (或 AO CC)	CRC16	校验位

全断全开返回码: FE OF OO OO OO 10 40 08

字段	含义	备注
FE	设备地址	

0F	0F 指令	返回指令: 如果查询错误,返回 0x82
00 00	起始地址	
00 10	数量	返回信息的反馈数量
C1 C3	CRC16	校验位

4.6、模拟量查询

查询模拟量 AD 字

获取到的模拟量数据与实际输入值之间的关系为:实际值=返回值*0.001

发送码: FE 04 00 00 00 0C E4 00

字段	含义	备注
FE	设备地址	
04	04 指令	查询输入寄存器指令
00 00	起始地址	要查询的模拟量寄存器地址
00 0C	查询数量	要查询的模拟量数量
E4 00	CRC16	校验位

模拟返回信息:

字段	含义	备注
FE	设备地址	
04	04 指令	返回指令:如果查询错误,返回 0x82
18	字节数	返回状态信息的所有字节数。1+(n-1)/8
00 0000 00	查询的 AD	0x00 00, 即十进制 0, 为查询的模拟量 AD
	字	字的值
81 60	CRC16	校验位

六、常见问题与解决方法

1、手机控制,设备控制无响应,不动作

设备与网关可能没有进行配对,可进入配置中的进入联机模式进行配对。

2、传感器读取参数,返回很慢或无反应

LORA 所搭配的传感器多为不可唤醒低功耗设置,子机会默认每5分钟唤醒一次,唤醒时可读取,如需要配置参数或加速回传可手动按板卡上的按钮主动回传。

3、发指令查询多个设备时,每个设备地址不能一样,不能使用广播地址 254 来进行通讯。

广播地址在总线上只有一个设备时可以使用,大于1个设备时请以拨码开关区分地址来 控制,否则会因为模块在通信数据的判断不同步上导致指令无法正确执行。

七、技术支持联系方式

联系电话: 400-6688-400、010-82899827-803

联系 QQ: 3323725294

软件下载

JYDAM 调试软件

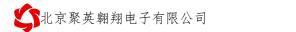
https://www.juyingele.com.cn/software/software/JYDAM%E8%B0%83%E8%AF%95%E8%BD%AF%E4%BB%B6.rar

以太网配置软件

 $\frac{\text{https://www.juyingele.com.cn/software/jynet/\%E4\%BB\%A5\%E5\%A4\%AA\%E7\%BD\%}{91\%E9\%85\%8D\%E7\%BD\%AE\%E8\%BD\%AF\%E4\%BB\%B6.rar}$

LORA 配置软件

https://www.juyingele.com.cn/software/software/LoraD2DConfig.zip (二维码使用浏览器扫描)



JYDAM 调试软件

以太网配置软件

LORA 配置软件

欢迎官网聚英公司微信公众号查看最新科技,实时动态

